当前位置: 首页 / English / Academics / 正文

Extremal metrics on toric manifolds and Related problem

作者:   时间:2019-02-24   点击数:

Topic: Extremal metrics on toric manifolds and Related problem

Speaker: Sheng Li

Abstract: In a sequence of papers, Donaldson initiated a program to study the extremal metrics on toric manifolds and solved the problem for CSCK metrics on toric surfaces. For toric manifolds, the equation of extremal metrics can be reduced to a real 4th-order partial differential equation on the Delzant polytope, called the Abreu equation.

In joint papers with Li An-Min and Chen Bohui we apply the affine techniques to extend the existence result in dimension 2 to extremal metrics. In joint work with Chen Bohui, Han Qing, Li An-Min and Lian Zhao, we study generalized Abreu equations on a Delzant ploytope and use the similar method to study constant scalar curvatures on homogeneous toric bundles.

Introduction of Speaker: Sheng Li, Professor of Sichuan University

Inviter: Liu Jianya, Professor of Mathematics School of Shandong University

Time: February 24th, 2019 (Sunday) 10:00—11:00 am

Venue: 924 Conference Hall, Block B of Zhixin Building, Central Campus

Organizer: Mathematics School of Shandong University

 

地址:中国山东省济南市山大南路27号   邮编:250100  

电话:0531-88364652  院长信箱:sxyuanzhang@sdu.edu.cn

Copyright@ m6体育入口(上海)贸易公司

微信公众号